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Introduction

Motivation

The need for suppressing noise
in particle-based simulations in
the process of obtaining an
ensemble solution.

⇒ Extracting the true information,
providing clean particle
distribution functions and
smooth gradients from data with
low signal-to-noise ratio (SNR).

Fig: Noisy velocity profile obtained with molecular
dynamics.

Objective

Development of filtering techniques that extract significant structures from noisy
data.
Investigation of the capabilities of a number of methods, including proper
orthogonal decomposition (POD), singular spectrum analysis (SSA), and wavelet
thresholding, to overcome unwanted fluctuations in analysed results.
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Simulation Methods- MD, DPD, and DSMC

Molecular dynamics (MD)

MD- particle-based modelling technique for
solving many-body problems from various
fields

Based on classical mechanics-
solving numerically Newton’s
equation of motion for the interacting
(through e.g. pair potentials)
multi-particle system.
The Lennard-Jones potential is often
used to model van der Waals (short
range) interactions.

Modelling software- OpenFOAM1.

Fig: Poiseuille flow simulated with MD.

Dissipative particle dynamics (DPD)

DPD- an off-lattice, discrete particle
modelling method for mesoscopic systems

Dissipative particle- a centre of mass
of mesoscopic portion of fluid (e.g. 3
water molecules in one bead).
The equations governing time
evolution resemble those of MD.
~Fi is a sum of pairwise forces
(C-conservative, D-drag and
R-random):
~Fi =

∑N
j 6=i (

~F C
ij + ~F D

ij + ~F R
ij ).

Classic DPD: ~F C
ij = Aij

(
1− rij

rc

)
~rij
rij

.

Simulations performed with
DL_MESO2.

1
www.OpenFOAM.org

2
www.stfc.ac.uk/SCD/research/app/ccg/software/DL_MESO/40694.aspx
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Simulation Methods- MD, DPD, and DSMC

Direct simulation Monte Carlo (DSMC)

DSMC- dominant method for performing numerical simulations of rarefied gases when
the Knudsen number (Kn) is significant. Knudsen number is defined as the ratio of the
molecular mean free path and the geometric characteristic length of the flow.

Uses Monte Carlo simulation to solve the Boltzmann equation.
One of the main difficulties is reducing the statistical scatter in the results,
particularly in low velocity applications.
Modelling software- dsmcFOAM in OpenFOAM.

Fig: Heat flux stream traces overlaid
on temperature contours computed by

DSMC for the driven cavity (at
Kn = 0.2 and uw = 10 m

s )3.

Fig: DSMC simulation of supersonic
free jet expansion into vacuum.

Fig: Temperature (K) contours around
a re-entry capsule obtained with

dsmcFOAM.

3
B. John, X.-J. Gu, and D. R. Emerson, “Nonequilibrium gaseous heat transfer in pressure-driven plane

poiseuille flow,” Physical Review E, vol. 88, no. 1, p. 013018, 2013
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Noise Reduction Algorithms

Proper Orthogonal Decomposition

Theoretical Basis

POD- a statistical low-rank approximation method that extracts linearly
dependent features of data; known also as Karhunen-Loéve decomposition or
principal component analysis (PCA).
POD approximates the true data matrix Atrue from noisy measurements A of rank
r ; yields matrix Ak ≈ Atrue of rank k (k < r ) with the lowest error in L2 or
Frobenius norm.
POD determines a set of orthogonal basis functions (modes, or EOFs4) of space
and time.
It can be performed with singular value decomposition (SVD) or eigenvalue
decomposition (EVD); SVD can be calculated by means of solving two
eigenvalue problems:
AAT = UΣV T V ΣUT = UΣ2UT , AT A = V ΣUT UΣV T = V Σ2V T .

Fig: SVD of matrix A.
4

EOFs- empirical orthogonal functions.
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Noise Reduction Algorithms

Proper Orthogonal Decomposition

De-noising Through Rank Reduction

The number of nonzero singular values =
rank of the original matrix.
Calculating the low-rank approximation
Ak from matrix A ≡ extracting noise from
data.
New development of the technique based
on time windows (WPOD) by Grinberg5.

How to determine the number of dominant
modes?

Energy content of eigenvalues (λk ,
squares of singular values), or rate of
decay.
Investigation of smoothness of the
temporal modes.
Calculation of Frobenius norm (or L2) of
Ak = UΣk V T versus Atrue.
Utilising optimal hard threshold (ongoing
work). Fig: Reconstruction of the signal with only one

dominant mode.
5

L. Grinberg, “Proper orthogonal decomposition of atomistic flow simulations,” J. Comp. Phys., vol. 231,
no. 16, pp. 5542–5556, 2012



An Evaluation of Popular Noise Reduction Techniques for Multi-scale Problems Involving Particle Flow Simulations

Noise Reduction Algorithms

Proper Orthogonal Decomposition

Analysis of Synthetic Signals

Fig: POD reconstruction of synthetic signal corrupted with Gaussian
noise 0.10*randn(); Right- rate of convergence and energy of the

eigenvalues with corresponding eigenvectors.
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Noise Reduction Algorithms

Proper Orthogonal Decomposition

Results of Applying WPOD to Particle Data

WPOD

Moving window: TPOD = NPODNts∆t , where NPOD
is the number of time averages used, Nts defines
how many observations are in one average and ∆t
is the simulation time-step.

Fig: WPOD analysis of a velocity profile for liquid argon Poiseuille
simulation; Nts = 1, NPOD = 500.
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Noise Reduction Algorithms

Proper Orthogonal Decomposition

Results of Applying WPOD to Particle Data

Steady-state simulation

Fig: WPOD reconstruction of a velocity profile for
force-driven water flow MD simulation; Nts = 1,

NPOD = 1000.

Non-stationary simulation

Fig: WPOD applied to the velocity field from
periodically-pulsating DPD flow; Nts = 1,

NPOD = 10000.
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Noise Reduction Algorithms

Proper Orthogonal Decomposition

Results of Applying WPOD to Particle Data

WPOD reconstructions of mass flow rate from oscillating MD flow in axially-periodic
converging/diverging channel6

Fig: Constant period of oscillations; Nts = 1,
NPOD = 160000.

Fig: Mixed-period forcing; Nts = 1, NPOD = 4000000.

6
M. K. Borg, D. A. Lockerby, and J. M. Reese, “A multiscale method for micro/nano flows of high aspect

ratio,” J. Comp. Phys., vol. 233, pp. 400–413, 2013
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Noise Reduction Algorithms

Proper Orthogonal Decomposition

Results of Applying WPOD to Particle Data

De-noising of velocity from oscillating DSMC gas flow with different number of
simulator particles in the domain

Fig: DSMC simulation with large
number of particles: 3,783,495

particles; 50 bins; Nts = 1,
NPOD = 4000.

Fig: Medium size system:
189,170 particles, SNR=6.8713 dB;

Nts = 1, NPOD = 4000. WPOD
achieved SNR=27.6165 dB.

Fig: Small number of particles: only
2,104 particles, SNR=-12.6615 dB;

Nts = 1, NPOD = 4000. WPOD
achieved SNR= 12.8643 dB.
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Noise Reduction Algorithms

Proper Orthogonal Decomposition

Remarks on POD

Strengths

+ POD/WPOD has a capability to
successfully separate noise from
ensemble average in particle
simulations; no assumption of the
noise or signal is required.

+ SVD provides the most optimal
approximation in spectral (L2), or
Frobenius norm.

+ It is a valuable tool for
time-dependent measurements and
multi-scale simulations.

+ SVD/EVD can be used to determine
when the simulation has converged.

Weaknesses

- POD requires relatively large
data-sets if SNR is low.

- Classical SVD is computationally
heavy.

- It is not beneficial for steady-state
simulations.

1 Can we efficiently de-noise
stationary data? SSA, rQRd/urQRd,
Wavelet thresholding, WienerChop
filter, EMD

2 Can we decrease the processing
time? Obtain higher SNR?

Random projections, QR instead of
SVD? rQRd/urQRd
Methods with a priori basis? Wavelet
thresholding, WienerChop filter
Improvement of POD’s cleaning
properties- additional de-noising of
dominant eigenvectors? WAVinPOD,
POD+SSA, POD+EMD,
POD+WienerChop
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Noise Reduction Algorithms

Wavelet Thresholding

Discrete Wavelet Transform with Filters

Continuous wavelet transform (CWT)

CWT- scans the signal f with a
translated (by u) and scaled (with s)
mother wavelet ψ,
fw (u, s) =

∫ +∞
−∞ f (t) 1√

s
ψ( t−u

s )dt .

Measures the time-frequency variations
of spectral components at various
resolutions- mathematical microscope.
Like Fourier transform, wavelet transform
(WT) is a 2D representation of 1D signal
f - redundancies.

Fig: CWT as a measure of correlation of the signal and
wavelet function.

Discrete wavelet transform (DWT)

DWT allows for more practical
analysis than endless CWT:

ψj,k (t) = 1√
sj

0

ψ

(
t−ku0sj

0

sj
0

)
,

where s0 > 1 is a fixed dilation step,
j represents a scale resolution, and
ku0sj

0 is a discrete shift with a
translation factor u0 .

Dyadic sampling with s0 = 2 and
u0 = 1- orthonormal basis functions.

Multiresolution analysis (MRA)

MRA as a practical design method for
orthonormal WT allowing for fast wavelet
transform (FWT).
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Noise Reduction Algorithms

Wavelet Thresholding

DWT with Filters

Multiresolution analysis

In MRA, the orthogonal WT
decomposes the functional
space at a resolution j into a
direct sum of orthogonal
subspaces of the large
scale features, V , and small
scale features, W :
Vj = Wj−1 ⊕ Vj−1 =
Wj−1 ⊕Wj−2 ⊕ Vj−2.

Approximation coefficient cj
and detail coefficient dj at
scale j : projection of
f ⊂ L2(<) onto Vj ⊂ L2(<)

and Wj ⊂ L2(<),
respectively.

Fig: One step of DWT with filter banks (FWT).

Fast wavelet transform

FWT utilises low- and high-pass quadrature mirror filters in order to compute signal’s
DWT. Natural extension can be applied to encode two-dimensional data, leading to a
set of details in three orientations: horizontal, vertical, and diagonal.
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Noise Reduction Algorithms

Wavelet Thresholding

DWT with Filters

Fig: FWT transforms the signal into a series of details, dj , and approximation coefficients, cj .
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Noise Reduction Algorithms

Wavelet Thresholding

Soft/Hard Thresholding

Universal threshold

The universal threshold (also called VisuShrink ) is
defined as
T = σn

√
2ln(N),

where σn = MAD/0.6745, with MAD being the
median absolute value of the finest scale wavelet
coefficients, and N the signal length.

Soft and hard thresholding

De-noising by soft thresholding (wavelet shrinkage):

ηT (dj ) =

{
sgn(dj )(

∣∣dj
∣∣− T ) if

∣∣dj
∣∣ ≥ T ,

0 otherwise.
or hard thresholding, defined as follows:

ηT (dj ) =

{
dj if

∣∣dj
∣∣ ≥ T ,

0 otherwise.

Fig: Right- Wavelet coefficients of a disturbed signal and de-noised
with soft thresholding.

Weaknesses

- Does not reduce the
dimensionality of the data
as well as POD!

- For low SNR, the wavelet
follows the noise.

- Wavelet thresholding is
conditioned by a number of
parameters.
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Noise Reduction Algorithms

Wavelet Thresholding

WAVinPOD

Fig: Schematic of WAVinPOD algorithm.

Step 1: Perform SVD on matrix data A.
Step 2: Define adaptively the number k
of dominant modes and set all the higher
singular values to zero.
Step 3: Perform WT of the k spatial
modes corresponding to the most
energetic singular values.
Step 3: Apply wavelet de-noising (soft or
hard) with universal threshold to detail
coefficients and reconstruct the modes
with inverse wavelet transform.
Step 5: Multiply the matrices to construct
the low-dimensional approximation of
data, Ak .

Strengths

+ More efficient de-noising than POD;
higher SNR for smaller number of
observations.

+ Preserves SVD’s dimensionality
reduction; produces approximation with a
smaller rank than wavelet thresholding.
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Noise Reduction Algorithms

Wavelet Thresholding

Results on Synthetic Data

Wavelet de-noising based on universal threshold is applied to k -right singular
vectors Vk .
Higher signal-to-noise ratio, computational time much lower than for other
wavelets + POD combinations.
Additional information about the signal is provided in the wavelet domain.

Fig: POD reconstruction of cuspamax signal corrupted with
noise with SNR=14.8168 dB; 20 observations. Processing time:

0.024953 s. SNR= 25.1425 dB.

Fig: Wavelet thresholding applied within SVD; 20 observations,
filter: db3, 4 levels, hard thresholding. Processing time:

0.036961 s. SNR= 35.8954 dB.



An Evaluation of Popular Noise Reduction Techniques for Multi-scale Problems Involving Particle Flow Simulations

Noise Reduction Algorithms

Wavelet Thresholding

Results on Synthetic Data

Fig: POD reconstruction of unsteady fish signal; 20
observations, 1024 spatial points, SNR of noisy signal=9.2 dB.

Processing time: 0.0243 s. SNR= 19.379 dB.

Fig: Thresholding applied within SVD; 20 observations, filter:
db3, 6 levels, soft thresholding. Processing time: 0.0389 s7.

SNR= 30.3279 dB.; wavelet thresholding alone provided SNR=
22.2868.

7
Difference in processing time between POD and WAVinPOD is significantly reduced for larger matrices!
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Noise Reduction Algorithms

Wavelet Thresholding

Results on Particle Data

WAVinPOD applied to DPD simulation of phase separation phenomena.

Fig: De-noising with WAVinPOD, wavelet shrinkage (WAV) and
WPOD applied to the averaged density field at every 500∆t ;

Nts = 10 and NPOD = 2000; filter: db3, 6 levels, soft
thresholding. Right- Comparison of WAVinPOD and WPOD
applied to the averaged density field at the last time-step;
Nts = 10 and NPOD = 2000. (Top). Simulation snapshot

(Bottom).
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Noise Reduction Algorithms

Singular Spectrum Analysis

Basic Singular Spectrum Analysis

The algorithm consists of four main steps :
embedding, SVD, eigentriple grouping and
diagonal averaging.

Step 1: In the embedding stage, break
the series X of length N into a sequence
of lagged vectors of size L by forming
Xi = (xi , . . . xi+L−1)T (1 ≤ i ≤ K ).
As a result, a trajectory matrix H is
constructed.
Step 2: Subject the trajectory matrix
(Hankel or Toeplitz) to SVD (or EVD).
Step 3: Truncate the singular values.
Step 4: Average over the diagonals
yielding a new series X̃ .

Strengths

+ Allows for applying SVD/EVD to
one-dimensional data.

+ Unlike WT, does not require a priori
basis.

Fig: Schematic of basic SSA.
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Noise Reduction Algorithms

Singular Spectrum Analysis

Extensions of SSA- MSSA, 2D SSA, POD+SSA

Multivariate SSA (MSSA)

MSSA A joint trajectory matrix is created from two (or more) data sets X1 and X2:
Z = (H1; H2) or Z = (H1; H2)T , where H1 and H2 are the matrices formed from the
arrays.

Two-dimensional SSA (2D SSA)

2D SSA consist of similar stages as the basic SSA, but utilises 2D window Lx × Ly .
The trajectory matrix is a Hankel block Hankel matrix of the form:

H2D =



H1 H2 H3 . . . HKy
H2 H3 H4 . . . HKy +1

H3 H4
. . .

. . .
...

...
...

. . .
. . .

...
HLy HLy +1 . . . . . . HNy

 , where every Hj is an Lx × Kx Hankel

matrix built from j-th column of 2D data.

POD+SSA/MSSA !

The algorithm applies SSA (or MSSA) to the significant spatial modes obtained with
POD. Provides improved SNR, and is faster than 2D SSA for large matrices.
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Noise Reduction Algorithms

Singular Spectrum Analysis

De-noising of Synthetic Data

Fig: Left and right-Comparison of POD, WAVinPOD, and
POD+MSSA; 20 observations, filter: db6, 6 levels, hard

thresholding, noisy signal SNR= 9.4413 dB.

SNR

POD= 19.7042 dB
WAVinPOD= 32.3535 dB
POD+MSSA= 35.3989 dB
⇒ the slowest!
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Noise Reduction Algorithms

Singular Spectrum Analysis

Results of Applying basic SSA to Particle Data

Fig: WPOD compared with SSA in reconstruction of a
velocity profile for force-driven water flow MD simulation;

Nts = 1, NPOD = 1000.

Fig: WPOD compared with SSA in reconstruction of a
velocity profile for force-driven water flow MD simulation;

Nts = 1, NPOD = 100.
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Noise Reduction Algorithms

Singular Spectrum Analysis

Random QR Denoising (rQRd)

The random QR denoising utilises random
projections and QR decomposition instead of
truncating the singular values.

Matrix HR , containing most of the
significant information of the Hankel
matrix is obtained by calculating the
product of H and a set of P random
vectors stored in a matrix Ω:
HR(L×P) = H(L×K ) × Ω(K×P).

The factorisation of HR = QR is
performed in order to project H onto the
reduced rank orthonormal basis Q:
H̃ = QQT H.

De-noised series X̃ is obtained in the
same way as in SSA.

uncoiled random QR de-noising (urQRd)

+ In urQRd the fast matrix-vector
multiplication with FFT is implemented to
improve the calculation of HR .

Fig: The rQRd algorithm.
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Noise Reduction Algorithms

Singular Spectrum Analysis

rQRd/urQRd v SSA

Fig: Comparison of processing time in signal
reconstruction with SSA, rQRd, and urQRd. Different
lengths of the signal were considered, N = 1024 ∗ i ,

where i = 1, 2, ..., 20.

Fig: Values of SNR obtained with SSA and rQRd iterated
it=1, it=2, it=3, and it=4 times. The signal considered was

Matlab’s cuspamax having SNR≈ 14.8 dB.
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Noise Reduction Algorithms

Singular Spectrum Analysis

Results obtained with rQRd/urQRd

Fig: Result of de-noising Matlab’s cuspamax signal with
wavelet thresholding, SSA, and urQRd; noisy signal SNR=

12.3096 dB, length=1024; filter: db3, 4 levels, hard
thresholding.

Time [s]:
SSA∼0.009, WAV∼0.007, urQRd∼0.005;

SNR [dB]:
SSA- 27.17, WAV- 25.55, urQRd- 26.50.

Fig: POD+urQRd produces very close result to
POD+SSA reconstruction of a velocity profile for
force-driven water flow MD simulation; Nts = 1,

NPOD = 100.
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Noise Reduction Algorithms

Empirical Mode Decomposition

EMD

Step 1: Identify the extrema of a given
signal x(t).
Step 2: Obtain the envelopes emin(t) and
emax (t) by interpolating between minima
and maxima, respectively.
Step 3: Compute the mean of the two
envelopes, m1

1(t) = emin(t)+emax (t)
2 .

Step 4: Extract the detail by subtracting
the mean from the signal,
h1

1(t) = x(t)−m1
1(t).

Step 5: Examine whether the residual
h1

1(t) satisfies the definition of intrinsic
mode function (IMF)8according to a
stopping criterion.

NO: Repeat n-times the Step 2 to Step 5 until
the conditions are met (sifting process). Thus:
IMF1 = hn

1(t) = hn−1
1 (t)− mn

1(t).

YES: The first IMF is found, C1 = h1
1(t).

Step 6: Iterate on the residual,
x(t)− IMF1 = r1.

Fig: The sifting process.

8
IMF-a function having the same number (or differing by one) of

zero-crossings and extrema, and symmetric envelopes defined by the local maxima and minima.
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Noise Reduction Algorithms

Empirical Mode Decomposition

EEMD

Drawback of basic EMD

EMD can introduce mode mixing when the local
minimum (or maximum) of two signals with
different frequency overlap! IMFs consist then
of oscillations of dramatically disparate scales,
resulting in lack of stability. In other words,
during the partial reconstruction, the signal can
be filtered out with noise!

Solution

Ensemble EMD- noise-assisted EMD procedure
(EEMD); generates multiple noise realisations
to keep the physical uniqueness of the IMFs.
Major steps:

Step 1: Add white noise to the signal.
Step 2: Decompose the data into EMD.
Step 3: Repeat the steps 1 and 2 with
different noise, and calculate the
ensemble mean.

Fig: Decomposition of a noisy signal using EMD.
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Noise Reduction Algorithms

Empirical Mode Decomposition

EMD De-noising

Fig: Result of de-noising Matlab’s cuspamax signal with
EMD-IIT; noisy signal SNR= 18.3052 dB, length=1024; 20

iterations, smooth thresholding. Obtained SNR=32.3534 dB.

Weakness

All EMD-based methods are slow compared
to other techniques.
Processing cuspamax signal with basic EMD
was 9 x slower than wavelet thresholding.

How to choose IMFs that contain signal?
Visual investigation of IMFs.
Statistical analysis of modes resulting from
signals solely consisting of fractional
Gaussian noise and white Gaussian noise.
⇒ Comparing the energy of all IMFs, and discarding

those containing only noise.

Can we threshold IMFs like wavelet coefficients?
EMD interval thresholding (EMD-IT).
h̃(i)
(

z(i)
j

)
=h(i)

(
z(i)

j

)
,
∣∣∣h(i)

(
r (i)
j

)∣∣∣ > Ti

0,
∣∣∣h(i)

(
r (i)
j

)∣∣∣ ≤ Ti
for

j = 1, 2, . . . ,Nz , where h(i)
(

z(i)
j

)
indicates

samples from the j-th interval between two
zero-crossings of the i-th IMF, and
h(i)
(

r (i)
j

)
is the single extrema; Ti is a

threshold value for i-th IMF.
Iterative EMD-IT (EMD-IIT).
Altering in a random way the samples of the
first IMF. Averaging over different noisy
versions of the original signal.
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Noise Reduction Algorithms

Empirical Mode Decomposition

Results of POD+EMD-IIT to particle data

Fig: (Left and Right)- WPOD compared with POD+EMD-IIT in reconstruction of a velocity profile for oscillating flow
of liquid argon from MD simulation; Nts = 1, NPOD = 160 (half a period of oscillation).

Combination with POD allows for applying EMD-IIT to large matrices, providing
improved SNR.
In studied simulation, the POD+EMD-IIT obtained slightly better result than
POD+EEMD or EMD. However, the EMD method is the fastest.
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Noise Reduction Algorithms

Wavelet-Based Empirical Wiener Filtering

WienerChop

Wiener filter- strikes an optimal
balance in the bias-variance
trade-off, i.e. inverse filtering and
noise smoothing.
It is optimal in terms of mean square
error (MSE).
Wiener filter is an ideal method that
requires exact knowledge of the
signal and noise statistics prior!

WienerChop (also WienerShrink )

WienerChop is based on
appropriate adjustment of wavelet
coefficients.
Two wavelet transforms are
performed: first- to generate noise
and signal approximations, and
second-to filter the wavelet
approximation coefficients.

Fw (i) =
Ĉ2

21(i)

Ĉ2
21(i)+σ2

n
,

where i = 1...Ns , and Ns is a number
of coefficient.

Fig: WienerChop filtering. The first wavelet transform (WT1) is
used to produce the estimate of the signal and noise. The

approximations are then used to design an empirical Wiener
filter, which is utilised to de-noise the original signal in the WT2

domain. Inverse transform, IWT2, is performed to obtain the
new data.
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Noise Reduction Algorithms

Wavelet-Based Empirical Wiener Filtering

WienerChop for de-noising synthetic data

Fig: Matlab’s synthetic signals used for analysis:
Piece-Regular (Top), Heavy-Sine (Middle), and Doppler

(Bottom).Cumulative processing time

WAV≈ 0.024 s
WienerChop≈ 0.042 s
SSA≈ 0.017 s
u/rQRd≈ 0.014 s
EMD9≈ 1.841 s
⇒ WienerChop recovered the highest

SNR, but was 3× slower than u/rRQd.

Fig: Gain in SNR obtained with WienerChop and other
methods. For wavelet thresholding (WAV) and WT1: db8, 5

levels, hard thresholding; for WT2: db4, 6 levels; for SSA and
u/rQRd: L = 25; EMD was performed with Iterative interval
thresholding (EMD-IIT): 20 iterations and noise variance,

σn = 0.9, or just 1 iteration (EMD-IT).

9
EMD-IIT was used for the first 2 signals, and EMD-IT for the last one.
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Noise Reduction Algorithms

Wavelet-Based Empirical Wiener Filtering

WienerChop applied to MD data

Fig: (Left and Right)- WPOD compared with POD+WienerChop and wavelet thresholding in reconstruction of a
velocity profile for oscillating flow of liquid argon from MD simulation; Nts = 1, NPOD = 160 (half a period of

oscillation); for WAV and WT1: db3, 6 levels, soft thresholding; for WT2: db6, 6 levels;

For large matrices the combination of POD+WienerChop is faster than
2-dimensional WienerChop and recovers higher SNR.
In studied simulation, the POD+WienerChop provided slight improvement
compared to WAVinPOD, but it was about 44% slower.
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Comparison

Techniques Strengths Weaknesses

POD/WPOD
+ Data-adaptive basis,
+ No parameters needed,
+ The most optimal approximation obtained for k .

- Large amount of data needed,
- Computationally expensive,
- Determination of significant EOFs

SSA/MSSA/2D SSA
+ Data-adaptive basis,
+ Can be applied to 1D data,
+ Provides the most optimal solution in L2 norm.

- Window size defined prior to processing,
- Not applicable for large data-sets,
- Difficulties in determination of number k .

rQRd/urQRd + Very fast in processing large matrices,
+ Higher flexibility in the choice of EOFs.

- Less optimal solution than SVD.

Wavelet thresholding
+ High SNR,
+ Fast processing at different resolutions,
+ Applicable to large matrices and data arrays.

- A priori basis,
- Conditioned by many parameters.

EMD/EEMD
+ Solely data-dependent,
+ Simple algorithm,
+ No parameters needed.

- Can cause mode mixing and costly
iterative methods needs to be applied,
does not preserve sharp edges.

WienerChop

+ Solely data-dependent,
+ Retains higher SNR than WT for strongly
disturbed data,
+ Can be applied to 1D signals and large matrices.

- Dependent on the number of parameters,
- Pre-determined basis.

WAVinPOD

+ Less dependent on wavelet basis,
+ Higher SNR than POD or wavelet thresholding
alone for additive white noise,
+ Preserves SVD’s dimensionality reduction.

- Choice of the filter and number k ,
- Slower for the same number of
observations.

POD+SSA/MSSA
+ Allows for applying SSA/MSSA to larger data-sets,
+ Higher SNR than POD alone,
+ No a priori basis needed.

- Computationally more intensive than POD
or wavelet thresholding,
- Multiple determination of EOFs.

POD+EMD/EMD-IIT + Higher SNR than for WPOD for the same
number of observations.

- The most expensive combination.

POD+WienerChop
+ Slightly enhanced SNR compared to
WAVinPOD for matrices,
+ The highest SNR for studied signals.

- More expensive than WAVinPOD,
- Basis is defined twice.
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Additional Remarks

Statistical Inefficiency

In particle simulations, due to the
small finite time-steps, there is no
guarantee that data is independent.
De-noising methods would be
computationally more efficient if the
raw data was statistically
uncorrelated, i.e. every observation
should provide new information.

Statistical Inefficiency

The sequence of steps is broken up
into nb blocks each of length τb , so
that nbτb = total size of the data set.
The statistical inefficiency sin is
defined as:
sin = limτb→∞

τb·var2(〈A〉b)

var2(A)
,

where var2(〈A〉b) and var2(A) are
the block and mean variance,
respectively.
For a time-step ∆t , the data should
be sampled every time interval
∆s = ∆t · sin.

Fig: Calculation of statistical inefficiency sin . Data
sampled at: Top- every 30th successive measurement;

Bottom- every time-step for different thermostats.
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Conclusions

Summary

Conclusions

The processing time of obtaining useful particle data can be significantly reduced
with de-noising techniques.
The choice of algorithm = the computational cost v SNR.
If the nature and number of components of the desired signal is known, the
methods utilising a priori basis can produce very good de-noising results in
terms of time and error in L2 (or Frobenius) norm.
Applying noise reduction techniques can largely improve the information transfer
in multi-scale simulations.
Further study is required for processing data corrupted with correlated, 1

f noise.
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